Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways.

نویسندگان

  • Florian Wernig
  • Manuel Mayr
  • Qingbo Xu
چکیده

Recently we demonstrated that mechanical stress induces apoptosis of vascular smooth muscle cells in vitro and in vein grafts (Mayr et al. FASEB J. 2000;15:261-270). The current study was designed to investigate molecular mechanisms of mechanical stretch-induced apoptosis. Smooth muscle cells cultivated on silicone elastomer plates precoated with collagen I, elastin, laminin, or Pronectin were subjected to cyclic mechanical stretch. Interestingly, in response to mechanical stress, the number of apoptotic cells increased significantly in cells growing on collagen I-coated plates but not on other matrixes. We therefore thought that receptors mediating binding to collagen I, such as integrin beta1 containing receptors, might be involved in signaling pathways leading to stretch-induced apoptosis. On collagen plates, mechanical stress rapidly activated p38 MAPK that phosphorylated p53 in smooth muscle cells. Lack of functional Rac completely abrogated p38 MAPK-p53 activation as well as apoptosis. Furthermore, mechanical stress resulted in increases of both integrin beta1 protein expression and activity as identified by Western blotting and Shc immunoprecipitation assays. Treatment with a beta1-integrin-blocking antibody or integrin signaling inhibitor cytochalasin B but not growth factor receptor inhibitor suramin abrogated both stretch-induced phosphorylation of p38 MAPK and p53 expression. Akin to the inhibition of p38 MAPK-p53 signaling, pretreatment with a beta1-integrin-blocking antibody or cytochalasin B but not suramin inhibited stretch-induced apoptosis on collagen plates. These results suggest that mechanical stress-induced apoptosis in vascular smooth muscle cells is mediated by beta1-integrin-rac-p38-p53 signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-protein-specific regulation of Cx43 expression in cardiac myocytes subjected to mechanical load.

To elucidate mechanisms responsible for mechanotransduction in the heart and define the effects of remodeling of the extracellular matrix, we cultured neonatal rat ventricular myocytes on native type I collagen, fibronectin, or denatured collagen and subjected them to uniaxial, pulsatile stretch. Changes in expression of the cardiac gap junction protein, Cx43, were measured by confocal microsco...

متن کامل

Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch.

To define mechanisms regulating expression of cell-cell junction proteins, we have developed an in vitro system in which neonatal rat ventricular myocytes were subjected to pulsatile stretch. Previously, we showed that expression of the gap junction protein, connexin (Cx) 43, is increased by approximately 2-fold after 1 hour of stretch, and this response is mediated by stretch-induced secretion...

متن کامل

Biomechanical stress-induced signaling in smooth muscle cells: an update.

The vascular wall is an integrated functional component of the circulatory system that is continually remodelling or is developing atherosclerosis in response to hemodynamic or biomechanical stress. In this process mechanical force is an important modulator of Vascular Smooth Muscle Cell (VSMC) morphology and function, including apoptosis, hypertrophy and proliferation that contribute to the de...

متن کامل

Cyclic stretch-induced thrombin generation by rat vascular smooth muscle cells is mediated by the integrin αvβ3 pathway.

AIMS Vascular smooth muscle cell (VSMC) phenotypic modulation plays a pivotal role in atherothrombotic diseases. Thrombin generation at the surface of VSMCs and activation of integrin mechanotransduction pathways represent potential mechanisms. Here, we examine whether mechanical stretch increases thrombin generation on cultured rat aortic VSMCs. METHODS AND RESULTS The integrin α(v)β(3) anta...

متن کامل

Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells.

Mechanical stress contributes to vascular disease related to hypertension. Activation of ERK is key to mediating cellular proliferation and vascular remodeling in response to stretch stress. However, the mechanism by which stretch mediates ERK activation in the vascular tissue is still unclear. Caveolin, a major component of a flasklike invaginated caveolae, acts as an adaptor protein for an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2003